editing disabled

Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.

Generator
cents
L
s
3g
Notes
4\9






845.313
211.328
0.00
633.985
L=1 s=0






29\65
848.5645
204.826
29.261
643.739
L=7 s=1





25\56

849.087
203.78
33.9635
645.306
L=6 s=1






46\103
849.417
203.121
36.931
646.295





21\47


849.81
202.336
40.467
647.474
L=5 s=1






59\132
850.116
201.7225
43.226
648.394






38\85

850.286
201.383
44.752
648.902







55\123
850.468
201.02
46.309
649.448




17\38



850.875
200.206
50.051
650.669
L=4 s=1






64\143
851.225
199.506
53.2015
651.719






47\105

851.351
199.252
54.342
652.099







77\172
851.457
199.042
55.289
652.415





30\67


851.622
198.712
56.775
652.91
L=7 s=2






73\163
851.796
198.363
58.342
653.432






43\96

851.917
198.12
59.436
653.797







56\125
852.075
197.803
60.863
654.2725



13\29




852.6005
196.754
65.585
655.847
L=3 s=1






61\136
853.083
195.7895
69.925
657.293






48\107

853.2135
195.528
71.101
657.685







83\185
853.3095
195.336
71.966
657.974





35\78


853.441
195.072
73.152
658.369







92\205
853.56
194.834
74.223
658.726






57\127

853.633
194.688
74.88
658.945







79\176
853.718
194.518
75.646
659.20




22\49



853.939
194.077
77.631
659.862
L=5 s=2






75\167
854.171
193.588
79.722
660.559






53\118

854.268
193.419
80.591
660.849







84\187
854.354
193.245
81.367
661.107





31\69


854.5015
192.952
82.694
661.55
L=7 s=3






71\158
854.676
192.603
84.264
662.073






40\89

854.811
192.3325
85.481
662.479







49\109
855.007
191.94
87.246
663.067


9\20





855.88
190.1955
95.098
665.684
L=2 s=1






50\111
856.7365
188.482
102.808
668.2545






41\91

856.925
188.105
104.503
668.819







73\162
857.053
187.847
105.664
669.206





32\71


857.737
187.517
107.152
669.7025
L=7 s=4






87\193
857.358
187.239
108.402
670.119






55\122

857.85
187.0775
109.129
670.361







78\173
857.529
186.897
109.94
670.6315




23\51



857.744
186.466
111.88
671.278
L=5 s=3






83\184
857.947
186.061
113.704
671.886






60\133

858.025
185.925
114.403
672.119







97\215
858.091
185.772
115.002
672.319
Golden Sub-Arcturus is near here




37\82


858.199
185.557
115.972
672.643







88\195
858.318
185.318
117.043
672.9995






51\113

858.4045
185.146
117.82
673.258







65\144
858.521
184.912
118.872
673.609



14\31




858.947
184.06
122.707
674.882
L=3 s=2






61\135
859.402
183.151
126.797
676,251






47\104

859.537
182.88
128.016
676.657







80\177
859.641
182.674
128.946
676.967





33\73


859.788
182.379
130.271
677.409
L=7 s=5






85\188
859.9265
182.102
131.518
677.824






52\115

860.014
181.926
132.31
678.088







71\157
860.12
181.715
133.258
678.404




19\42



860.408
181.139
135.854
679.27
L=4 s=3






62\137
860.739
180.4775
138.829
680.261






43\95

860.885
180.185
140.144
680.70







67\148
861.02
179.915
141.3615
681.1055





24\53


861.263
179.43
143.544
681.833
L=5 s=4






53\117
861.569
178.816
146.304
682.753






29\64

861.823
178.308
148.59
683.515
L=6 s=5






34\75
862.22
177.516
152.156
684.704
L=7 s=6
5\11






864.525
172.905
691.62
L=1 s=1